《特殊角的三角函数值》教案
- 资源简介:
约2440字。
《特殊角的三角函数值》教案
(第3课时)
复习引入
教师提问:一个直角三角形中,一个锐角正弦、余弦、正切值是怎么定义的?
在学生回答了这个问题后,教师再复述一遍,提出新问题:两块三角尺中有几个不同的锐角?是多少度?分别求出这几个锐角的正弦值、余弦值和正切值.
提醒学生:求时可以设每个三角尺较短的边长为1,利用勾股定理和三角函数的定义可以求出这些三角函数值.
探究新知
(一)特殊值的三角函数
学生在求完这些角的正弦值、余弦值和正切值后教师加以总结.
30°、45°、60°的正弦值、余弦值和正切值如下表:
30° 45° 60°
sinα
cosα
tanα 1
教师讲解上表中数学变化的规律:对于正弦值,分母都是2,分子按角度增加分别为 , 与 .对于余弦值,分母都是2,分子按角度增加分别为 , 与 .对于正切,60度的正切值为 ,当角度递减时,分别将上一个正切值除以 ,即是下一个角的正切值.
要求学生记住上述特殊角的三角函数值.
教师强调:(sin60°)2用sin260°表示,即为(sin60°)•(sin60°).
(二)特殊角三角函数的应用
1.师生共同完成课本第82页例3:求下列各式的值.
(1)cos260°+sin260°.
(2) -tan45°.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源