《解直角三角形的应用》教案
- 资源简介:
约1480字。
《解直角三角形的应用》教案
一.教学三维目标
(一)、知识目标
使学生了解仰角、俯角的概念,使学生根据直角三角形的知识解决实际问题.
(二)、能力目标
逐步培养分析问题、解决问题的能力.
二、教学重点、难点和疑点
1.重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.
2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.
三、教学过程
(一)回忆知识
1.解直角三角形指什么?
2.解直角三角形主要依据什么?
(1)勾股定理:a2+b2=c2
(2)锐角之间的关系:∠A+∠B=90°
(3)边角之间的关系:
tanA=
(二)新授概念
1.仰角、俯角
当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.
教学时,可以让学生仰视灯或俯视桌面以体会仰角与俯角的意义.
2.例1
如图(6-16),某飞机于空中A处探测到目标C,此时飞行高度AC=1200米,从飞机上看地平面控制点B的俯角α=16°31′,求飞机A到控制点B距离(精确到1米)
解:在Rt△ABC中sinB=
AB= = =4221(米)
答:飞机A到控制点B的距离约为4221米.
例2.2003
年10月15日“神州”5号载人航天飞船发射成功。当飞船完成变轨后,就在离地形表面350km的圆形轨道上运行。如图,当飞船运行到地球表面上P点的正上方时,从飞船上能直接看到地球上最远的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为6400km,结果精确到0.1km)
分析:从飞船上能看到的地球上最远的点,应是视线与地球相切时的切点。将问题放到直角三角形FOQ中解决。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源