约2220字。
《二次函数的应用》教案2
教学目标:1、继续经历利用二次函数解决实际最值问题的过程。
2、会综合运用二次函数和其他数学知识解决如有关距离、利润等的函数最值问题。
3、发展应用数学解决问题的能力,体会数学与生活的密切联系和数学的应用价值。
教学重点和难点:
重点:利用二次函数的知识对现实问题进行数学地分析,即用数学的方式表示问题以及用数学的方法解决问题。
难点:例3将现实问题数学化,情景比较复杂。
教学过程:
一、复习:
1.二次函数y=ax2+bx+c(a≠0)的图象和性质?并指出顶点、对称轴、与坐标轴的交点、与x轴两交点间的距离?
2.各类二次函数顶点位置与a、b、c的关系?
(顶点在x轴上、y轴上、原点、经过原点)
3.求二次函数y=-2x2+10x+1的最大(或最小)值?
思考:如何求下列函数的最值:
(1) y=-2x2+10x+1(3≤x≤4)
(2)y=2x2+4x+5
(3)y=1 100-5x2
(4) y=x2+1x2
2利用二次函数的性质解决许多生活和生产实际中的最大和最小值的问题,它的一般方法是:
(1)列出二次函数的解析式,列解析式时,要根据自变量的实际意义,确定自变量的取值范围。
(2)在自变量取值范围内,运用公式或配方法求出二次函数的最大值和最小值。
二、例题讲解
例题2:B船位于A船正东26km处,现在A、B两船同时出发,A船发每小时12km的速度朝正北方向行驶,B船发每小时5km的速度向正西方向行驶,何时两船相距最近?最近距离是多少?
分析:设经过t时后AB两船分别到达A’,B’,两船之间距离为A’B’=AB’2+AA’2 =(26-5t)2+(12t)2 =169t2-260t+676 。因此只要求出被开方式169t2-260t+676的最小值,就可以求出两船之间的距离s的最小值。
解:设经过t时后,A,B AB两船分别到达A’,B’,两船之间距离为
S=A’B’=AB’2+AA’2 =(26-5t)2+(12t)2
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源