约3490字 第六章 三角函数
一、基础知识
定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。角的大小是任意的。
定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。若圆心角的弧长为L,则其弧度数的绝对值|α|= ,其中r是圆的半径。
定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x轴的正半轴重合,在角的终边上任意取一个不同于原点的点P,设它的坐标为(x,y),到原点的距离为r,则正弦函数sinα= ,余弦函数cosα= ,正切函数tanα= ,余切函数cotα= ,正割函数secα= ,余割函数cscα=
定理1 同角三角函数的基本关系式,倒数关系:tanα= ,sinα= ,cosα= ;商数关系:tanα= ;乘积关系:tanα×cosα=sinα,cotα×sinα=cosα;平方关系:sin2α+cos2α=1, tan2α+1=sec2α, cot2α+1=csc2α.
定理2 诱导公式(Ⅰ)sin(α+π)=-sinα, cos(π+α)=-cosα, tan(π+α)=tanα, cot(π+α)=cotα;(Ⅱ)sin(-α)=-sinα, cos(-α)=cosα, tan(-α)=-tanα, cot(-α)=cotα; (Ⅲ)sin(π-α)=sinα, cos(π-α)=-cosα, tan=(π-α)=-tanα, cot(π-α)=-cotα; (Ⅳ)sin =cosα, cos =sinα, tan =cotα(奇变偶不变,符号看象限)。
定理3 正弦函数的性质,根据图象可得y=sinx(x∈R)的性质如下。单调区间:在区间 上为增函数,在区间 上为减函数,最小正周期为2 . 奇偶数. 有界性:当且仅当x=2kx+ 时,y取最大值1,当且仅当x=3k - 时, y取最小值-1。对称性:直线x=k + 均为其对称轴,点(k , 0)均为其对称中心,值域为[-1,1]。这里k∈Z.
定理4 余弦函数的性质,根据图象可得y=cosx(x∈R)的性质。单调区间:在区间[2kπ, 2kπ+π]上单调递减,在区间[2kπ-π, 2kπ]上单调递增。最小正周期为2π。奇偶性:偶函数。对称性:直线x=kπ均为其对称轴,点 均为其对称中心。有界性:当且仅当x=2kπ时,y取最大值1;当且仅当x=2kπ-π时,y取最小值-1。值域为[-1,1]。这里k∈Z.
定理5 正切函数的性质:由图象知奇函数y=tanx(x kπ+ )在开区间(kπ- , kπ+ )上为增函数, 最小正周期为π,值域为(-∞,+∞),点(kπ,0),(kπ+ ,0)均为其对称中心。
定理6 两角和与差的基本关系式:cos(α β)=cosαcosβ sinαsinβ,sin(α β)=sinαcosβ cosαsinβ; tan(α β)=
定理7 和差化积与积化和差公式:
sinα+sinβ=2sin cos ,sinα-sinβ=2sin cos ,
cosα+cosβ=2cos cos , cosα-cosβ=-2sin sin ,
sinαcosβ= [sin(α+β)+sin(α-β)],cosαsinβ= [sin(α+β)-sin(α-β)],
cosαcosβ= [cos(α+β)+cos(α-β)],sinαsinβ=- [cos(α+β)-cos(α-β)].
定理8 倍角公式:sin2α=2sinαcosα, cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α,
tan2α=
定理9 半角公式:sin = ,cos = ,
tan = =
定理10 万能公式: , ,
定理11 辅助角公式:如果a, b是实数且a2+b2 0,则取始边在x轴正半轴,终边经过点(a, b)的一个角为β,则sinβ= ,cosβ= ,对任意的角α.
asinα+bcosα= sin(α+β).
定理12 正弦定理:在任意△ABC中有 ,其中a, b, c分别是角A,B,C的对边,R为△ABC外接圆半径。
定理13 余弦定理:在任意△ABC中有a2=b2+c2-2bcosA,其中a,b,c分别是角A,B,C的对边。
定理14 图象之间的关系:y=sinx的图象经上下平移得y=sinx+k的图象;经左右平移得y=sin(x+ )的图象(相位变换);纵坐标不变,横坐标变为原来的 ,得到y=sin
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源