高中数学竞赛补充定理
- 资源简介:
约1490字。
高中数学竞赛补充定理
1.梅涅劳斯定理
如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
2.赛瓦定理
设O是△ABC内任意一点,AO、BO、CO分别交对边于D、E、F,则 BD/DC*CE/EA*AF/FB=1。
3.托勒密定理
圆内接凸四边形两对对边乘积的和等于两条对角线的乘积。
4.西姆松定理
从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
5.几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点--重心。三角形内到三边距离之积最大的点--重心
6.在周长一定的n边形的集合中,正n边形的面积最大。
在周长一定的简单闭曲线的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。
7. sin(3α) = 3sinα-4sin^3α = 4sinα•sin(60°+α)sin(60°-α)
cos(3α) = 4cos^3α-3cosα = 4cosα•cos(60°+α)cos(60°-α)
tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α)
8.欧拉公式
(1)a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)
当r=0,1时式子的值为0 当r=2时值为1
当r=3时值为a+b+c
(2)设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则: d^2=R^2-2Rr
(3)欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数。n是一个正整数。
欧拉证明了下面这个式子:
如果n的标准素因子分解式是p1^a1*p2^a2*……*pm^am,其中众
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源