2012年广东省广州市中考数学试卷(解析版)
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
共25小题,约8420字。
2012年广东省广州市中考数学试卷解析
一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中只有一项是符合题目要求的)
1.(2012•广州)实数3的倒数是( )
A.﹣ B. C.﹣3 D.3
考点: 实数的性质。
专题: 常规题型。
分析: 根据乘积是1的两个数互为倒数解答.
解答: 解 :∵3× =1,
∴3的倒数是 .
故选B.
点评: 本题考查了实数的性质,熟记倒数的定义是解题的关键.
2.(2012•广州)将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为( )
A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2 D.y= (x+1)2
考点: 二次函数图象与几何变换。
专题: 探究型。
分析: 直接根据上加下减的原则进行解答即可.
解答: 解:由“上加下减”的原则可知,将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为:y=x2﹣1.
故选A.
点评: 本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
3.(2012•广州)一个几何体的三视图如图所示,则这个几何体是( )
A.四棱锥 B.四棱柱 C.三棱锥 D.三棱柱
考点: 由三视图判断几何体。
分析: 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
解答: 解:由于主视图和左视图为长方形可得此几何体为柱体,
由俯视图为三角形,可得为棱柱体,
所以这个几何体是三棱柱;
故选D.
点评: 本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.
4.( 2012•广州)下面的计算正确的是( )
A.6a﹣5a=1 B.a+2a2=3a3 C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b
考点: 去括号与添括号;合并同 类项。
分析: 根据合并同类项法则:把同类项的系数相加,所得结果作为系 数,字母和字母的指数不变;去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进行计算,即可选出答案.
解答: 解:A、6a﹣5a=a,故此选项错误;
B、a与2a2不是同类项,不能合并,故此选项错误;
C、﹣(a﹣b)=﹣a+b,故此选项正确;
D、2(a+b)=2a+2b,故此选项错误;
故选:C.
点评: 此题主要考查了合并同类项,去括号,关键是注意去括号时注意符号的变化,注意乘法分配律的应用,不要漏乘.
5.(2012•广州)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是( )
A.26 B.25 C.21 D.20
考点: 等腰梯形的性质;平行四边形的判定与性质。
分析: 由BC∥AD,DE∥AB,即可得四边形ABED是平行四边形,根据平行四边形的对边相等,即可求得BE的长,继而求得BC的长,由等腰梯形ABCD,可求得AB的长,继而求得梯形ABCD的周长.
解答: 解:∵BC∥AD,DE∥AB,
∴四边形ABED是平行四边形,
∴BE=AD=5,
∵EC=3,
∴BC=BE+EC=8,
∵四边形ABCD是等腰梯形,
∴AB=DC=4,
∴梯形ABCD的周长为:AB+BC+CD+AD=4+8+4+5=21.
故选C.
点评: 此题考查了等腰梯形的性质与平行四边形的判定与性质.此题比较简单,注意判定出四边形ABED是平行四边形是解此题的关键,同时注意数形结合思想的应用.
6.(2012•广州)已知|a﹣1|+ =0,则a+b=( )
A.﹣8 B.﹣6 C.6 D.8
考点: 非负数的性质:算术平方根;非负数的性质:绝对值。
专题: 常规题型。
分析: 根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.
解答: 解:根据题意得,a﹣1=0,7+b=0,
解得a=1,b=﹣7,
所以,a+b=1+(﹣7)=﹣6.
故选B.
点评: 本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.
7.(2012•广州)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )
A. B. C. D.
考点: 勾股定理;点到直线的距离;三角形的面积。
专题: 计算题。
分析: 根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C到AB的距离.
解答: 解:根据题意画出相应的图形,如图所示:
在Rt△ABC中,AC=9,BC=12,
根据勾股定理得:AB= =15,
过C作CD⊥AB,交AB于点D,
又S△ABC= AC•BC= AB•CD,
∴CD= = = ,
则点C到AB的距离是 .
故选A
点评: 此题考查了勾股定理,点到直线的距离,以及三角形面积的求法,熟练掌握勾股定理是解本题的关键.
8.(2012•广州)已知a>b,若c是任意实数,则下列不等式中总是成立的是( )
A.a +c<b+c B.a﹣c>b﹣c C.ac<bc D.ac>bc
考点: 不等式的性质。
分析: 根据不等式的性质,分别将个选项分析求解即可求得答案;注意排除法在解选择题中的应用.
解答: 解:A、∵a>b,c是任意实数,∴a+c>b+c,故本选项错误;
B、∵a>b,c是任意实数,∴a﹣c>b﹣c,故本选项正确;
C、当a>b,c<0时,ac<bc,而此题c是任意实数,故本选项错误;
D、当a>b,c>0时,ac>bc,而此题c是任意实数,故本选项错误.
故选B.
点评: 此题考查了不等式的性质.此题比较简单,注意解此题的关键是掌握不等式的性质:
(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.
(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.
(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
9.(2012•广州)在平面中,下列命题为真命题的是( )
A.四边相等的四边形是正方形 B.对角线相等的四边形是菱形 C.四个角相等的四边形是矩形 D.对角线互相垂直的四边形是平行四边形
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源