《任意角三角函数的定义》教案+课件+点评ppt(3份)
- 资源简介:
河南省焦作市2017年优质课数学1.2《任意角三角函数的定义》教案+课件+点评
《任意角三角函数》教学点评.doc
《任意角三角函数》教学课件.ppt
《任意角三角函数》教学设计.doc
任意角的三角函数
一、教学内容分析
三角函数是重要的基本初等函数,它是描述周期现象的重要数学模型。任意角的三角函数是学习诱导公式、三角函数的图象与性质的前提。它不仅是本节的核心概念,也是三角函数内容的核心概念。由于角的概念的推广,锐角三角函数的概念也必然要扩充,任意角的三角函数的概念的出现是角的概念推广的必然结果。
二、教学目标分析
(一)知识与技能
1.能用直角坐标系中角的终边与单位圆交点的坐标来表示锐角三角函数、任意角的三角函数。
2.了解三角函数是以角为自量,以单位圆上点的坐标或坐标的比值为函数值的函数。
3.知道三角函数是研究一个实数集到另一个实数集的对应关系。
(二)过程与方法
1.经历从锐角三角函数定义过渡到任意角的三角函数定义的学习过程,体验三角函数概念的产生、发展过程。
2.在定义任意角的三角函数过程中,领悟直角坐标系的工具功能,体会数形结合的魅力。
(三)情感态度与价值观
1.引导学生积极探索、深入思考,在任意角三角函数定义建构的过程中,激发学生求知欲,鼓励学生大胆尝试,培养学生敢于探索、勇于创新的学习品质。
2.在任意角的三角函数概念同化和精致的过程中发展学生研究问题的能力。
三、学情分析
在概念教学过程中要注意学生已有知识经验的作用,发挥其正迁移,防止其负迁移。本课时研究的是任意角的三角函数,学生在初中阶段曾经研究过锐角三角函数,其研究范围是锐角;其研究方法是几何的,没有坐标系的参与;其研究目的是为解直角三角形服务。以上三点都是与本课时不同的,因此在教学过程中要发展学生的已有认知经验,发挥其正迁移。具体而言要做到:明确研究范围的变化,开阔学生的视野,并揭示由此带来的新问题,激发学生的学习兴趣;借助单位圆在坐标系中进行研究,要先将锐角的三角函数问题置于坐标系中,帮助学生利用坐标系借助单位圆重新认识锐角三角函数,这样做激活了学生的已有知识经验,并且用新的视角认识已有知识经验,复习了旧知识,同时为新的研究内容做好铺垫;第三,由于研究范围的改变,更加突出了任意角的三角函数是为研究客观世界中大量存在的周期性现象服务的。这些都是在本课时的学习之后应该取得的认知方面的进步。
认识一个函数,关键是认识函数的三要素。在学生学习过的函数中,一次、二次、反比例或者用图、表表示的对应法则的函数,其三要素是比较容易找到的,指、对函数的学习就需要一定的基础,同样在任意角的三角函数学习过程中也可能在自变量和对应法则上出现问题,应该注意明确任意角的三角函数的三要素,比如正弦函数y=sinα中自变量是角α,并且α∈R,对应法则是一个角与其正弦值对应,至于这个值怎么计算,在此处是规定为角α终边与单位圆交点的纵坐标,通过例2可以看出,也可以利用比值定义。对于一次函数、二次函数也需要将自变量的值进行计算得到函数值,这一点本质上是统一的, 要引导学生类比理解。
此外,由于学生对角度制的应用已经很熟练,而对弧度制的应用比较陌生,所以在理解函数的定义域是实数集时可能会出现问题,这需要教师的引导,同时也需要时间适应。
四、教学策略
1.学生理解锐角三角函数与三角形的大小无关可能会有一定难度,原因是在初中,锐角所在的三角形是给定的。通过几何画板的动态性来克服这个困难。
2.学生理解“三角函数可以看成是自变量为实数的函数”会有一定困难,原因是初中学习的锐角三角函数是用来解三角形的工具,并没有作为函数研究。在教学过程中,通过几何画板演示,分析角的终边唯一,终边与单位圆的交点唯一,交点的坐标唯一,让学生理解正弦、余弦、正切是函数。
3.在研究例1的变式2时,学生在求角的终边与单位圆的交点时,可能会有困难,原因是给定的角终边上的点并不在单位圆上,为了解决这个困难,设计了变式1,从而分散这个难点。
五、教学过程设计
(一)教学流程设计
回顾旧知→初步感知→类比分析→生成新知→解决问题→形成技能→目标检测→能力培养→梳理知识→提升思想→课后巩固→知识内化→分析联系→洞悉本质
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源