《弧长及扇形的面积》教案7
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约3680字。
课题:3.9 弧长及扇形的面积
教学目标:
1、经历探索弧长计算公式及扇形面积计算公式的过程;掌握弧长计算公式及扇形面积计算公式,并会应用公式解决问题.
2、经历探索弧长计算公式及扇形面积计算公式的过程,培养探索能力,训练数学运用能力。
3、通过用弧长及扇形面积公式解决实际问题,体验数学与人类生活的密切联系,激发学习数学的兴趣,提高学习积极性,同时提高对知识的运用能力。
教学重点与难点:
重点:弧长和扇形面积公式,准确计算弧长和扇形的面积。
难点:运用弧长和扇形的面积公式计算比较复杂图形的面积。
课前准备:直尺、圆规、多媒体课件。
教学过程:
一、创设情境,引入新课:
师:同学们,还记得唐代诗人王之涣的《登鹳雀楼》这首诗吗?
白日依山尽,黄河入海流。欲穷千里目,更上一层楼。
你能求出这幢楼至少该有多高吗?生活中有没有这样的楼?让我们拭目以待。(板书课题:弧长及扇形的面积)
【设计意图】通过诗情画意的展示,调动学生学习的积极性,激发起进一步学习的兴趣,吸引学生的注意力,为新课的学习做铺垫。
二、自主先学, 合作探究:
【自主先学一】【多媒体展示】:
问题:(1)圆的圆心角(圆周角)是多少度?(2)圆的周长公式是什么?
【合作探究一】弧长的计算公式:
你能探讨出在半径为R的圆中,n°的圆心角所对的弧长的计算公式吗?请大家互相交流:
360°的圆心角对应圆周长为2πR,那么1°的圆心角对应的弧长为______,n°的圆心角对应的弧长应为1°的圆心角对应的弧长的n倍,即_________。
师生归纳:在半径为R的圆中,n°的圆心角所对的弧长的计算公式为: 。
【活动方式】学生先独立思考,小组讨论,并派代表在全班交流,师解答释疑。
【友情提示】在应用弧长公式l= 进行计算时,要注意公式中n的意义,n表示1°圆心角的倍数,它是不带单位的。
【学以致用】【多媒体展示】
例 制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算图中管道的展直长度,即弧AB的长(结果精确到0.1 mm)。
【活动方式】学生先独立思考,小组讨论,并派代表在全班交流,然后师生互动
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源