《多边形的内角和》说课稿3
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约3460字。
多边形的内角和
一、说教材
教学内容是多边形的内角和及外角和定理的推导和应用。在教学中要运用转化思想,观察图形和运用代数方法计算的数形结合思想。21世纪教育网版权所有
二、学生分析
学生已经学习了求三角形的内角和的方法,掌握了多边形有关概念,理解了多边形的对角线。这为本节课的学习打下了一定的基础。在设计推导多边形内角和定理时首先采用作对角线将多边形划分为若干三角形的方法,然后再探索其他方法,这样比较符合学生的认知规律。21教育网
另外,在以往的学习中,学生的动手实践、自主探究能力都得到一定的训练,本节课将进一步培养学生这些方面的能力。
三、设计理念
新课程要求老师要有先进的教学理念,要注重引导学生自主探究,培养学生的动手实践能力;要注重培养学生的创新精神;在学习过程中要让学生主动地进行观察、实验、猜想、验证、推理与交流等数学活动;要想方设法营造出良好的学习氛围,让学生当学习的主人,要多给学生机会,充分调动学生自主探究学习的积极性。“数学教学必须建立在学生的认知发展水平和已有的知识经验基础之上。”本节课的教学设计正是遵循这一原则进行的。
四、教学目标
1、知识与技能:
①探索并了解多边形的内角和公式。
②能对多边形的内角和公式进行应用,解决实际问题。
③掌握多边形的外角和定理,并能运用。
2、过程与方法:
①经历探索多边形内角和定理的过程,进一步发展学生的合情推理意识和主动探究习惯,进一步体会数学与现实生活的紧密联系。
②通过学生自己动手操作,积极参加数学活动的“做数学”的过程,让学生亲身体验数学发现,增强动手能力。
③在对多边形的内角和公式进行应用,解决实际问题过程中,培养学生“用数学”的能力。
3、情感态度与价值观:
①通过师生共同活动,培养学生创新精神,增强学生对数学的好奇心与求知欲。
②向学生渗透类比、转化的数学思想,并使学生学会与他人合作。
五、教学重点
多边形内角和定理与外角和定理的推导及运用。
六、教学难点
将多边形的内角和转化为三角形的内角和,找出它们之间的关系。
七、教学手段
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源