一、教学内容分析
本节课是普通高中新课程标准实验教科书《数学》(选修2-3)中第二章《随机变量及其分布》第一节“离散型随机变量及其分布列”的第二课时.
引入随机变量的目的是研究随机现象发生的统计规律,及所有随机事件发生的概率.离散型随机变量的分布列完全描述了由这个随机变量所刻画的随机现象.对随机变量的概率分布的研究,实现了随机现象数学化的转化.学生在第一课时已经学习了“离散型随机变量”,对离散型随机变量的概念有了一定的认识.了解到建立从随机试验结果到随机变量的映射的目的是将实际问题数量化,便于用数学工具更好地研究问题,进一步体会数学建模的思想. 教师的重要作用就在于培养学生“数学地”观察事物,对现象或问题 “数学地”思考,进而合理地量化和转化,把问题“数学化”,用数学的思想方法加以解决.本节课要研究随机变量所表示的随机事件的概率分布情况,即建立“离散型随机变量的分布列”这一数学模型. 离散型随机变量和其对应的概率之间是一种函数关系,因此可以类比函数来研究. 教师引导学生用数学的思维分析问题,用数学的思想方法解决问题. 通过类比函数的表示方法,首先对三个具体实例进行表示,获得对“离散型随机变量的分布列”模型的初步认识,再从这些具体实例中抽象概括出离散型随机变量的分布列的一般定义并进一步探索性质. 在概念得出的过程中,可以培养学生的抽象概括能力. 在此基础上学习两点分布等特殊的分布列,理解分布列对于刻画随机现象的重要性,能够应用分布列解决实际问题.在实际问题的解决中,可以培养学生的数学建模能力.
因此,本节课的教学重点:理解离散型随机变量的分布列的概念,理解分布列对于刻画随机现象的重要性,理解两点分布的模型及其应用.
二、教学目标设置
1.通过具体实例,理解离散型随机变量分布列的概念,理解分布列对于刻画随机现象的重要性;类比函数的几种表示法学习离散型随机变量的表示方法;探索离散型随机变量的性质.
2.通过学生的自主探究,进一步体会数学抽象、数学建模的思想,培养学生抽象概括能力.
3.通过类比、推广、特殊化等一系列思维活动,体会统计思想,学会用统计思想分析和处理随机现象的基本方法. 在解决实际问题的过程中,同学们加深对有关数学概念本质的理解,认识数学知识与实际的联系,并学会用数学解决一些实际问题.
4.通过创设情境调动学生参与课堂的热情,激发学生学习数学的情感.经历数学建模的过程并从中获得成功的体验,锻炼克服困难的意志,建立学习数学的自信心.
三、学生学情分析
(一)学生程度
我所授课的对象是天津市实验中学的学生.学生的水平相对较高,基础知识掌握得较好,学生的理解能力比较强.虽然已经经历了概率的学习,但是对随机变量的学习还处于初期阶段,一些数学方法和数学思想的掌握还有待进一步加强.
(二)知识层面
1.学生已经学习过概率的知识并掌握了计数原理;
2.掌握了离散型随机变量的定义.
(三)能力层面
1.具有一定的数学抽象的能力;
2.具有一定的数学建模的基础.
根据以上三个方面的分析,在学生已有的认知基础的条件下,学生可以自主利用古典概型计算概率的公式完成求基本事件的概率.在具体操作过程中,需要老师的引导和帮助.
教学难点:理解离散型随机变量分布列的概念,理解分布列对于刻画随机现象的重要性.
四、教学策略分析
1.《高中数学课程标准》倡导自主探索、动手实践、合作交流等学习方式.根据本节课的教学内容和学生自主学习能力相对比较强的特点,以问题串驱动整个课堂的进行,采用启发、引导、探究相结合的教学方法.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源