第九章 不等式与不等式组 (6份打包)
9.1.1 不等式及其解集.ppt
9.1.2 不等式的性质.ppt
9.2 第1课时 一元一次不等式的解法.ppt
9.2 第2课时 实际问题与一元一次不等式.ppt
9.3 一元一次不等式组.ppt
第九章 不等式与不等式组.doc
第九章 不等式与不等式组
9.1 不等式
9.1.1 不等式及其解集
感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义.通过解决简单的实际问题,学生自主地寻找不等式的解集,会把不等式的解集正确地表示在数轴上.
重点
不等式的解集的概念.
难点
不等式的解集的概念及在数轴上表示不等式的解集的方法.
一、创设情境,引入新课
教师出示问题:
一辆匀速行驶的汽车在11: 20距离A地50千米,要在12:00以前驶过A地,车速应该满足什么条件?
教师提问:
题目中有等量关系吗?
学生回答:没有.
教师追问:那是什么关系呢?
学生讨论发言:
从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶50千米所用的时间不到23小时,即50x<23.
从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶23小时的路程要超过50千米,即23x>50.
教师总结:这些是不等关系.
二、讲授新课
1.不等式、一元一次不等式的概念
在学生充分发表自己意见的基础上,师生共同归纳得出:
用“<”或“>”表示大小关系的式子叫做不等式,用“≠”表示不等关系的式子也是不等式.
教师提问:
下列式子中哪些是不等式?
(1)a+b=b+a (2)-3>-5 (3)x≠1
(4)x+3>6 (5)2m<n (6)2x-3
上述不等式中,有些不含未知数,有些含有未知数,一般地,我们把用“<”或“>”表示的式子叫做不等式;用“≠”表示不等关系的式子也是不等式.
补充说明:
用“≥”和“≤”表示不等关系的式子也是不等式.
2.不等式的解、不等式的解集
问题1:要使汽车在12:00以前驶过A地,你认为车速应该为多少呢?
问题2:车速可以是每小时85千米吗?每小时82千米呢?每小时75.1千米呢?每小时74千米昵?
教师总结:我们曾经学过“使方程两边相等的未知数的值就是方程的解”,我们也可以把使不等式成立的未知数的值叫做不等式的解.
问题3:刚才同学们所说的这些数,哪些是不等式23x>50的解?
问题4:判断下列数中哪些是不等式23x>50的解:
76,73,79,80,74.9,75.1,90,60.
教师提问:
你还能找出这个不等式的其他解吗?它到底有多少个解?你从中发现了什么规律?
学生讨论后得出:
当x>75时,不等式23x>50成立;当x<75或x=75时,不等式23x>50不成立.这就是说,任何一个大于75的数都是不等式23x>50的解,这样的解有无数个.因此x>75表示了能使不等式23x>50成立的x的取值范围.
这个解集还可以用数轴来表示.(教师示范表示方法)
教师引导:
回到前面的问题,要使汽车在12:00以前驶过A地,则车速必须大于
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源