九年级数学上2.5一元二次方程的应用课件+教学设计+练习+素材(10份)
《一元二次方程的应用》习题1.doc
《一元二次方程的应用》教案.doc
《一元二次方程的应用》课件.ppt
《一元二次方程的应用》习题2.doc
导入_一元二次方程的应用.ppt
缉私艇_一元二次方程的应用.ppt
利用一元二次方程解决销售问题.swf
拓展练习2_一元二次方程的应用.ppt
小结_实际问题与一元二次方程.jpg
一元二次方程的应用.swf
《一元二次方程的应用》教案
教学目标
(-)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题.
(二)能力训练点:通过列方程解应用问题,进一步提高分析问题、解决问题的能力.
(三)德育渗透点:通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性.
教学重点、难点
1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题.
2.教学难点:根据数与数字关系找等量关系.
教学过程
1.复习提问
(1)列方程解应用问题的步骤?
①审题,②设未知数,③列方程,④解方程,⑤答.
(2)两个连续奇数的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整数).
2.例1 两个连续奇数的积是323,求这两个数.
分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法).①设较小的奇数为x,则另一奇数为x+2,②设较小的奇数为x-1,则另一奇数为x+1;③设较小的奇数为2x-1,则另一个奇数2x+1.
以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法.
解法(一)
设较小奇数为x,另一个为x+2,
据题意,得x(x+2)=323.
整理后,得x2+2x-323=0.
解这个方程,得x1=17,x2=-19.
由x=17得x+2=19,由x=-19得x+2=-17,
答:这两个奇数是17,19或者-19,-17.
解法(二)
设较小的奇数为x-1,则较大的奇数为x+1.
据题意,得(x-1)(x+1)=323.
《用一元二次方程解决问题》习题
1.某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表:
A种产品 B种产品
成本(万元/件) 2 5
利润(万元/件) 1 3
(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?
(2)若工厂计划投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?
(3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润.
2.某花圃用花盆培育某种花苗,经过实验发现每盆的盈利于每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3圆;以同样的栽培条件,若每盆没增加1株,平均单株盈 利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?
3.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2011年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房, 若在这两年内每年投资的增长率相同.
(1)求每 年市政府投资的增长率;
(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.
4.汽车产业是我市支柱产业之一,产量和效益逐年增加 .据统计,2008年我市某种品牌汽车的年产量为6.4万辆,到2010年,该品牌汽车的年产量达到10万辆.若该品牌汽车年产量的年平均增长率从2008年开 始五年内保持不变,则该品牌汽车2011年的年产量为多少万辆?
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源