《指数及指数幂运算》ppt(共3份)

  • 手机网页: 浏览手机版
  • 资源类别: 人教课标版 / 高中课件 / 必修一课件
  • 文件类型: ppt
  • 资源大小: 470 KB
  • 资源评级:
  • 更新时间: 2015/10/23 18:46:34
  • 资源来源: 会员转发
  • 资源提供: zzzysc [资源集]
  • 下载情况: 本月:获取中 总计:获取中
  • 下载点数: 获取中 下载点  如何增加下载点
  •  点此下载传统下载

资源简介:
查看预览图

指数及指数幂运算(共3份)
~$B版2003课标版 _必修一_第三章 基本初等函数(Ⅰ)_3.1 指数与指数函数_3.1.1 实数指数幂及其运算 (1).doc
~$B版2003课标版 _必修一_第三章 基本初等函数(Ⅰ)_3.1 指数与指数函数_3.1.1 实数指数幂及其运算.doc
人教B版2003课标版 _必修一_第三章 基本初等函数(Ⅰ)_3.1 指数与指数函数_3.1.1 实数指数幂及其运算 (1).doc
人教B版2003课标版 _必修一_第三章 基本初等函数(Ⅰ)_3.1 指数与指数函数_3.1.1 实数指数幂及其运算.doc
人教B版2003课标版 _必修一_第三章 基本初等函数(Ⅰ)_3.1 指数与指数函数_3.1.1 实数指数幂及其运算.ppt
  课堂设计
  本节课重点是分数指数幂的意义,根式与分数指数幂之间的相互转化,有理指数幂的运算性质。学习难点是根式的概念,根式与分数指数幂之间的相互转化
  主要让学生理解1、n次方根及n次根式的概念;掌握n次根式的性质,并能运用它进行化简,求值。2、分数指数幂的概念;掌握指数幂的运算性质;掌握根式与分数指数幂的互化;
  新课中通过对整数指数幂的运算性质进行类比,归纳分数指数幂的运算性质.培养学生观察、类比的能力,渗透“转化”的数学思想,培养学生的应用意识。
  主要是通过自主预习由学过的二次方根和三次方根类比推得n次方根的定义及性质,性质一般会在预习中混淆,所以在新课教授中再予以强调。
  新课教授中通过学生合作探究进一步强化n次方根的定义与性质及指数幂的推广,师生共同探究指数幂性质应用时的限制条件。
  通过运算训练,养成学生严谨治学,一丝不苟的学习习惯。
  附本课设计的主要内容:预习案、学案、自我测评
  3、1、1指数及指数幂运算预习案(第一课时)
  昌邑一中       丁春梅
  学习目标
  知识与技能:
  1. 理解n次方根及n次根式的概念;掌握n次根式的性质,并能运用它进行化简,求值。
  2.  理解分数指数幂的概念;掌握指数幂的运算性质;掌握根式与分数指数幂的互化;
  过程与方法:通过对整数指数幂的运算性质进行类比,归纳分数指数幂的运算性质.
  情感态度价值观:培养学生观察、类比的能力,渗透“转化”的数学思想,培养学生的应用意识。通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;
  学习重点
  分数指数幂的意义,根式与分数指数幂之间的相互转化,有理指数幂的运算性质
  学习难点
  根式的概念,根式与分数指数幂之间的相互转化
  学习过程
  一、自主学习:
  预习案
  一、自主学习:
  知识链接:1、整数指数幂概念:       ;  ;
  .
  2、指数幂由正整数指数幂扩充到整数指数幂的依据为:                    。
  3、整数指数幂的运算性质:(1)        ;
  (2)        ;(3)              其中             ,              
  4、计算:(1)        ;(2)         ;
  (3)        ;(4)          ;
  (5)        ;(6)         
  自主探究:
  1、求出下列四个根式的值
  (1)4的平方根    ;(2)81的平方根        
  (3)27的三次方根    (4)-8的三次方根      
  思考1:若 ,则 叫做a的平方根.同理,若 ,则 叫做a的立方根.
  若类比平方根、立方根的概念,你能给出4次方根、5次方根…… n次方根的定义吗?
  2、填空:
  (1)25的平方根等于________________(2) 16的四次方根等于_________________
  (3)-32的五次方根等于______________(4) 27的立方根等于______________
  (5)a6的三次方根等于_______________(6)0的七次方根等于___________
  思考2:观察上述各式,每组根式有什么特点?你能得出什么结论?  

 点此下载传统下载搜索更多相关资源
  • 说明:“点此下载”为无刷新无重复下载提示方式;“传统下载”为打开新页面进行下载,有重复下载提示。
  • 提示:非零点资源点击后将会扣点,不确认下载请勿点击。
  • 我要评价有奖报错加入收藏下载帮助

下载说明:

  • 没有确认下载前请不要点击“点此下载”、“传统下载”,点击后将会启动下载程序并扣除相应点数。
  • 如果资源不能正常使用或下载请点击有奖报错,报错证实将补点并奖励!
  • 为确保所下资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源。
  • 站内部分资源并非原创,若无意中侵犯到您的权利,敬请来信联系我们。

资源评论

共有 0位用户发表了评论 查看完整内容我要评价此资源