一次函数实际应用问题练习卷
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
共36道小题,约12400字。
一次函数实际应用问题练习
1、一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y(百元)关于观众人数x(百人)的函数解析式和成本费用s(百元)关于观众人数x(百人)的函数解析式;
⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?
(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)
1、解:⑴由图象可知:当0≤x≤10时,设y关于x的函数解析y=kx-100,
∵(10,400)在y=kx-100上,∴400=10k-100,解得k=50
∴y=50x-100,s=100x-(50x-100),∴s=50x+100
⑵当10<x≤20时,设y关于x的函数解析式为y=mx+b,
∵(10,350),(20,850)在y=mx+b上,
∴ 10m+b=350 解得 m=50
20m+b=850 b=-150
∴y=50x-150 ∴s=100x-(50x-150)-50∴s=50x+100
∴y= 50x-100 (0≤x≤10)
50x-150 (10<x≤20) 令y=360 当0≤x≤10时,50x-100=360 解得x=9.2 s=50x+100=50×9.2+100=560 当10<x≤20时,50x-150=360解得x=10.2 s=50x+100=50×10.2+100=610。要使这次表演会获得36000元的毛利润. 要售出920张或1020张门票,相应支付的成本费用分别为56000元或61000元。
2、甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,个自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:
⑴分别求出表示甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量的取值范围)
⑵当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;
⑶在⑵的条件下,设乙同学从A点继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙同学相遇,此时点B与山顶距离为1.5千米,相遇后甲、乙各自沿原路下山和上山,求乙到大山顶时,甲离山脚的距离是多少千米?
2、解:⑴设甲、乙两同学登山过程中,路程s(千米)与时间t(时)的函数解析式分别为s =k t,s =k t。由题意得:6=2 k ,6=3 k ,解得:k =3,k =2 ∴s =3t,s =2t
⑵当甲到达山顶时,s =12(千米),∴12=3t 解得:t=4∴s =2t=8(千米)
⑶由图象可知:甲到达山顶宾并休息1小时后点D的坐标为(5,12)
由题意得:点B的纵坐标为12- = ,代入s =2t,解得:t=
∴点B( , )。设过B、D两点的直线解析式为s=kx+b,由题意得
t+b= 解得: k=-6
5t+b=12 b=42 ∴直线BD的解析式为s=-6t+42 ∴当乙到达山顶时,s =12,得t=6,把t=6代入s=-6t+42得s=6(千米)
3、教室里放有一台饮水机,饮水机上有两个放水管。课间同学们到饮水机前用茶杯接水。假设接水过程中水不发生泼洒,每个学声所接的水量是相等的。两个放水管同时打开时,它们的流量相同。放水时先打开一个水管,过一会再打开第二个水管,放水过程中阀门一直开着。饮水机的存水量y(升)与放水时间x(分钟)的函数关系如下图所示:
⑴求出饮水机的存水量y(升)与放水时间x(分钟)(x≥2)的函数关系式;
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源