高考冲刺数形结合的思想专题讲练

  • 手机网页: 浏览手机版
  • 资源类别: 北师大版 / 高中教案 / 高考复习教案
  • 文件类型: doc
  • 资源大小: 588 KB
  • 资源评级:
  • 更新时间: 2016/8/1 11:12:12
  • 资源来源: 会员转发
  • 资源提供: zzzysc [资源集]
  • 下载情况: 本月:获取中 总计:获取中
  • 下载点数: 获取中 下载点  如何增加下载点
  •  点此下载传统下载

资源简介:

约5860+2780字。

  高考冲刺  数形结合的思想
  编稿:孙永钊  审稿:张林娟
  【高考展望】
  在高考题中,数形结合的题目出现在高中数学知识的方方面面上,把图象作为工具、载体,以此寻求解题思路或制定解题方案,真正体现数形结合的简捷、灵活特点的多是填空小题。
  从近三年新课标高考卷来看,涉及数形结合的题目略少,预测今后可能有所加强。因为对数形结合等思想方法的考查,是对数学知识在更高层次的抽象和概括能力的考查,是对学生思维品质和数学技能的考查,是新课标高考明确的一个命题方向。
  1.数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。“数缺形时少直观,形少数时难入微”,利用数形结合的思想方法可以深刻揭示数学问题的本质。
  2.数形结合的思想方法在高考中占有非常重要的地位,考纲指出“数学科的命题,在考查基础知识的基础上,注重对数学思想思想方法的考查,注重对数学能力的考查”,灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能。
  3.“对数学思想方法的考查是对数学知识在更高层次的抽象和概括的考查,考查时要与数学知识相结合”,用好数形结合的思想方法,需要在平时学习时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础。
  4.函数的图象、方程的曲线、集合的文氏图或数轴表示等,是 “以形示数”,而解析几何的方程、斜率、距离公式,向量的坐标表示则是“以数助形”,还有导数更是数形结合的产物,这些都为我们提供了 “数形结合”的知识平台。
  5.在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题。用好数形结合的方法,能起到事半功倍的效果,“数形结合千般好,数形分离万事休”。
  【知识升华】
  纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。是通过“以形助数”(将所研究的代数问题转化为研究其对应的几何图形)或“以数助形”(借助数的精确性来阐明形的某种属性),把抽象的数学语言与直观的图形结合起来思考,也就是将抽象思维与形象思维有机地结合起来,是解决问题的一种数学思想方法。它能使抽象问题具体化,复杂问题简单化,在数学解题中具有极为独特的策略指导与调节作用。
  具体地说,数形结合的基本思路是:根据数的结构特征,构造出与之相应的几何图形,并利用图形的特性和规律,解决数的问题;或将图形信息全部转化成代数信息,使解决形的问题转化为数量关系的讨论。
  选择题,填空题等客观性题型,由于不要求解答过程,就某些题目而言,这给学生创造了灵活运用数形结合思想,寻找快速思路的空间。但在解答题中,运用数形结合思想时,要注意辅之以严格的逻辑推理,“形”上的直观是不够严密的。
  1.高考试题对数形结合的考查主要涉及的几个方面:
  (1)集合问题中Venn图(韦恩图)的运用;
  (2)数轴及直角坐标系的广泛应用;
  ……
  【巩固练习】
  1.已知直线l1:4x-3y+6=0和l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是(  )
  A.2       B.3                C.          D. 
  2.方程|x|=cos x在(-∞,+∞)内(  )
  A.没有根         B.有且仅有一个根
  C.有且仅有两个根  D.有无穷多个根
  3.已知双曲线  (a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线的离心率的取值范围是(  )
  A.(1,2]  B.(1,2)            C.[2,+∞)     D.(2,+∞)
  4.若对任意x∈R,不等式|x|≥ax恒成立,则实数a的取值范围是(  )
  A.a<-1  B.|a|≤1
  C.|a|<1  D.a≥1
  5. f(x)的定义域为R,且f(x)= ,若方程f(x)=x+a有两不同实根,则a的取值范围为(  )
  A.(-∞,1)  B.(-∞,1]
  C.(0,1)  D.(-∞,+∞)
  6.已知函数y=f(x)和y=g(x)在[-2,2]的图象如下图所示:
  则方程f[g(x)]=0有且仅有________个根,方程f[f(x)]=0有且仅有________个根.
  7.函数f(x)= x3+ax2-bx在[-1,2]上是单调减函数,则a+b的最小值为________.
  8.若方程2a=|ax-1|(a>0,a≠1)有两个实数解,求实数a的取值范围.
  9.用计算机产生随机二元数组成区域 ,

 点此下载传统下载搜索更多相关资源
  • 说明:“点此下载”为无刷新无重复下载提示方式;“传统下载”为打开新页面进行下载,有重复下载提示。
  • 提示:非零点资源点击后将会扣点,不确认下载请勿点击。
  • 我要评价有奖报错加入收藏下载帮助

下载说明:

  • 没有确认下载前请不要点击“点此下载”、“传统下载”,点击后将会启动下载程序并扣除相应点数。
  • 如果资源不能正常使用或下载请点击有奖报错,报错证实将补点并奖励!
  • 为确保所下资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源。
  • 站内部分资源并非原创,若无意中侵犯到您的权利,敬请来信联系我们。

资源评论

共有 0位用户发表了评论 查看完整内容我要评价此资源