《等差数列》教案11
- 资源简介:
约1870字。
等差数列教案
临清市第二中学 数学 编写人:李其智 审稿人:马英济
教学目标:
知识与能力:理解等差数列的定义;掌握等差数列的通项公式;培养学生的观察、归纳能力,应用数学公式的能力及渗透函数、方程思想
过程与方法:经历等差数列的产生过程和应用等差数列的基本知识解决问题的能力。
情感态度与价值观:通过等差数列概念的归纳概括,培养学生的观察、分析能力,体验从特殊到一般认知规律,培养学生积极思维,追求新知的创新意识。
教学重点:理解等差数列的概念,掌握等差数列的通项公式,体会等差数列与一次函数之间的联系。
教学难点:概括通项公式推导过程中体现出的数学思想方法。
教学准备:根据本节知识的特点,为突出重点、突破难点,增加教学容量,便于学生更好的理解和掌握所学的知识,我利用计算机辅助教学。
教学过程:
创设情境,课题导入
复习上节课学习的数列的定义及数列的表示法。这些方法从不同的角度反映了数列的特点,下面我们来看这样的一些数列:(大屏幕显示课本41页的四个例子)
⑴、0 5 10 15 20 … …
⑵、48 53 58 63
⑶、18 15.5 13 10.5 8 5.5
⑷、10072 10144 10216 10288 10360
提出问题:以上四个数列有什么共同的特征?请同学们互相讨论。
(二)设置问题,形成概念
等差数列:一般地,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数就叫做等差数列的公差,常用字母d表示。
提出问题:等差数列的概念中的几个关键点是什么?
数学语言: 或 ≥1)
理解等差数列的概念是本节课的重点,为了加深对概念的理解,让学生讨论课本45页练习第4题,教师总结。
(三)等差数列的通项公式
提出问题:如同我们在前一节看到的,能否确定一个数列的通项公式对研究这个数列具有重要的意义。数列⑴、⑵、⑶、⑷的通项公式存在吗?如果存在,分别是什么?
再问:若一个无穷等差数列{ },首项是 ,公差为d,怎样得到等差数列的通项公式?(引导学生根据等差数列的定义进行归纳)
即:
即:
即:
… …
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源