2012年全国各地中考数学试题分类汇编:与圆有关的压轴题
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约8810字。
2012年全国各地中考数学试题分类汇编
与圆有关的压轴题
1.(2012•南充)如图,⊙C的内接⊿AOB中,AB=AO=4,tan∠AOB= ,抛物线y=ax2+bx经过点A(4,0)与点(-2,6)
(1)求抛物线的函数解析式.
(2)直线m与⊙C相切于点A交y轴于点D,动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动,点P的速度为每秒1个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值
(3)点R在抛物线位于x轴下方部分的图象上,当⊿ROB面积最大时,求点R的坐标.
考点:二次函数综合题;解二元一次方程组;二次函数最值的应用;三角函数和勾股定理的应用;待定系数法求二次函数解析式。
专题:计算题;代数几何综合题。
分析:(1)点A(4,0)与点(-2,6)代入抛物线y=ax2+bx,得:
16a+4b=0 a=
4a-2b=6 解得: b= -2 从而求出解析式。
(2)先得到∠ OAD=∠AOB ,作OF⊥AD于F,再算出OF的长,t秒时,OP=t,DQ=2t,若PQ⊥AD 则FQ=OP= t
DF=DQ-FQ= t ⊿ODF中,t=DF= = =1.8(秒)
(3)先设出R(x, x2-2x) ,作RG⊥y轴于G 作RH⊥OB于H交y轴于I,则RG= x OG= x2+2x 再算出IR、HI的长,从而求出RH的长 ( x- )2+
当x= 时,RH最大。S⊿ROB最大。这时: x2-2x= ×( )2-2× =-
∴点R( ,- )
解答:
(1)把点A(4,0)与点(-2,6)代入抛物线y=ax2+bx,得:
16a+4b=0 a=
4a-2b=6 解得: b= -2
∴抛物线的函数解析式为:y= x2-2x
(2)连AC交OB于E
∵直线m切⊙C于A ∴AC⊥m,∵ 弦 AB=AO ∴ AB(⌒)=AO(⌒)
∴AC⊥OB ∴m∥OB ∴∠ OAD=∠AOB
∵OA=4 tan∠AOB=
∴OD=OA•tan∠OAD=4× =3
作OF⊥AD于F
OF=OA•sin∠OAD=4× =2.4
t秒时,OP=t,DQ=2t,若PQ⊥AD 则FQ=OP= t
DF=DQ-FQ= t ⊿ODF中,t=DF= = =1.8(秒)
(3)令R(x, x2-2x) (0<x<4)
作RG⊥y轴于G 作RH⊥OB于H交y轴于I
点评:本题主要考查对用待定系数法求二次函数的解析式,二次函数的最值,三角函数和勾股定理的应用等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键,此题是一个综合性比较强的题目,有一定的难度.
2.(2012•扬州)如图1,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A、C分别在x轴、y轴的正半轴上,且OA=2,OC=1,矩形对角线AC、OB相交于E,过点E的直线与边OA、BC分别相交于点G、H.
(1)①直接写出点E的坐标: (1,) .
②求证:AG=CH.
(2)如图2,以O为圆心,OC为半径的圆弧交OA与D,若直线GH与弧CD所在的圆相切于矩形内一点F,求直线GH的函数关系式.
(3)在(2)的结论下,梯形ABHG的内部有一点P,当⊙P与HG、GA、AB都相切时,求⊙P
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源