2011年全国各地中考数学试卷分类汇编:综合型问题
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约17180字。
2011年全国各地中考数学试卷分类汇编:综合型问题.
一 选择题
1. (2011 浙江湖州,10,3)如图,已知A、B是反比例面数 (k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形0MPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为
【答案】A
2. (2011台湾全区,19)坐标平面上,二次函数 的图形与下列哪一个方程式的图形没
有交点?
A. x=50 B. x=-50 C. y=50 D. y=-50
【答案】D
3. (2011广东株洲,8,3分)某广场有一喷水池,水从地面喷出,如图,以水平地面为 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4(单位:米)的一部分,则水喷出的最大高度是( )
A.4米 B.3米 C.2米 D.1米
【答案】D
4. (2011山东聊城,12,3分)某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为( )
A.50m B.100m
C.160m D.200m
【答案】C
5. (2011河北,8,3分)一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下列函数关系式: ,则小球距离地面的最大高度是( )
A.1米 B.5米 C.6米 D.7米
【答案】C
二、填空题
1. (2011湖南怀化,16,3分)出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,则当x=________元时,一天出售该种手工艺品的总利润y最大.
【答案】4
2. (2011江苏扬州,17,3分)如图,已知函数 与 (a>0,b>0)的图象交于点P,点P的纵坐标为1,则关于x的方程 =0的解为
【答案】-3
3.
4.
5.
三、解答题
1. (2011山东滨州,25,12分)如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC。点A、B在抛物线造型上,且点A到水平面的距离AC=4O米,点B到水平面距离为2米,OC=8米。
(1) 请建立适当的直角坐标系,求抛物线的函数解析式;
(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA、PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)
(3) 为了施工方便,现需计算出点O、P之间的距离,那么两根支柱用料最省时点O、P之间的距离是多少?(请写出求解过程)
【答案】
解:(1)以点O为原点、射线OC为y轴的正半轴建立直角坐标系………………1分
设抛物线的函数解析式为 ,………………2分
由题意知点A的坐标为(4,8)。且点A在抛物线上,………………3分
所以8=a× ,解得a= ,故所求抛物线的函数解析式为 ………………4分
(2)找法:延长AC,交建筑物造型所在抛物线于点D, ………………5分
则点A、D关于OC对称。
连接BD交OC于点P,则点P即为所求。………………6分
(3)由题意知点B的横坐标为2,且点B在抛物线上,
所以点B的坐标为(2,2)………………7分
又知点A的坐标为(4,8),所以点D的坐标为(-4,8)………………8
设直线BD的函数解析式为 y=kx+b,………………9
则有 ………………10
解得k=-1,b=4.
故直线BD的函数解析式为 y=-x+4,………………11
把x=0代入 y=-x+4,得点P的坐标为(0,4)
两根支柱用料最省时,点O、P之间的距离是4米。………………12
2. (2011四川重庆,25,10分)某企业为重庆计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
月份x 1 2 3 4 5 6 7 8 9
价格y1(元/件) 560 580 600 620 640 660 680 700 720
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源