高中数学必修一第三章导学案

  • 手机网页: 浏览手机版
  • 资源类别: 人教课标版 / 高中教案 / 必修三教案
  • 文件类型: doc
  • 资源大小: 881 KB
  • 资源评级:
  • 更新时间: 2011/6/14 16:06:28
  • 资源来源: 会员原创
  • 资源提供: hxh6666 [资源集]
  • 下载情况: 本月:获取中 总计:获取中
  • 下载点数: 获取中 下载点  如何增加下载点
  •  点此下载传统下载

资源简介:

约5550字。

  §3.1.1  方程的根与函数的零点
  一、学习目标
  1、掌握零点的概念。理解函数的零点与方程的根的关系。
  2、掌握判断一个函数是否有零点的方法。
  4、通过观察函数的图象,判断函数的零点大致的区间。
  5、在函数与方程的联系中体验数学中的转化思想的意义和价值。
  二、自主学习
  1、预习教材P86~ P88,找出疑惑之处,并回答下列问题
  ⑴、一元二次方程+bx+c=0 (a0)的解法.判别式=              .当    0,方程有两根,为            ;当    0,方程有一根,为            ;当    0,方程无实根.
  ⑵、方程+bx+c=0 (a0)的根与二次函数y=ax+bx+c (a0)的图象之间有什么关系?
  判别式 一元二次方程 二次函数图象国与x轴交点个数
  2、探究:解下列各题
  ① 方程的解为           ,函数的图象与x轴有     个交点,坐标为              .
  ② 方程的解为         ,函数的图象与x轴有     个交点,坐标为              .
  ③ 方程的解为         ,函数的图象与x轴有     个交点,坐标为              .
  根据以上实例,可以得到什么结论?你能将结论进一步推广到吗?
  三、合作探究
  尝试给出函数的零点的定义:                                                 .
  思考:函数的零点、方程的实数根、函数 的图象与x轴交点的横坐标,三者有什么关系?
  3、试试:
  (1)函数的零点为              ; 
  (2)函数的零点为              .
  4、探究:
  ① 作出的图象,求的值,观察和的符号
  ② 观察右边函数的图象,
  在区间上      零点;      0;在区间上      零点;
  0;在区间上      零点;      0.
  发现规律:由以上两步探索,你可以得出什么样的结论?
  尝试给出零点存在性定理:
  6、试试
  1、求函数的零点的个数.
  2、方程log3x+x=3的解所在的区间是(     )
  A、(0,1)   B、(1,2)  C、(2,3)  D、(3,+∞)
  7、尝试小结函数零点的求解方法.
  四、巩固提高
  1. 函数的零点个数为(    ).
  A.  1    B. 2     C.  3      D. 4
  2.若函数在上连续,且有.则函数在上(    ).
  A. 一定没有零点     B. 至少有一个零点
  C. 只有一个零点     D. 零点情况不确定
  3. 函数的零点所在区间为(    ).
  A.    B.    C.    D.
  4. 函数的零点为              .
  5. 若函数为定义域是R的奇函数,且在上有一个零点.则的零点个数为     .
  §3.1.2 用二分法求方程的近似解
  一、学习目标
  1. 根据具体函数图象,能够借助计算器用二分法求相应方程的近似解;
  2. 通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.
  二、自主学习
  1、(预习教材P89~ P91,找出疑惑之处)
  复习:对于函数,我们把使        的实数x叫做函数的零点.
  方程有实数根函数的图象与x轴        函数        .
  如果函数在区间上的图象是连续不断的一条曲线,并且有             ,那么,函数在区间内有零点.
  2、探究:有12个小球,质量均匀,只有一个是比别的球重的,你用天平称几次可以找出这个球?(要求次数越少越好.)
  解法:
  第一次,两端各放      个球,低的那一端一定有重球;
  第二次,两端各放        个球,低的那一端一定有重球;
  第三次,两端各放      个球,如果平衡,剩下的就是重球,否则,低的就是重球.
  思考:以上的方法其实这就是一种二分法的思想,采用类似的方法,如何求的零点所在区间?如何找出这个零点?

 点此下载传统下载搜索更多相关资源
  • 说明:“点此下载”为无刷新无重复下载提示方式;“传统下载”为打开新页面进行下载,有重复下载提示。
  • 提示:非零点资源点击后将会扣点,不确认下载请勿点击。
  • 我要评价有奖报错加入收藏下载帮助

下载说明:

  • 没有确认下载前请不要点击“点此下载”、“传统下载”,点击后将会启动下载程序并扣除相应点数。
  • 如果资源不能正常使用或下载请点击有奖报错,报错证实将补点并奖励!
  • 为确保所下资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源。
  • 站内部分资源并非原创,若无意中侵犯到您的权利,敬请来信联系我们。

资源评论

共有 0位用户发表了评论 查看完整内容我要评价此资源