约2060字。
章节第八章课题圆的有关概念和性质
课型复习课教法讲练结合
教学目标(知识、能力、教育)
1.了解圆及其相关结论概念, 认识圆的轴对称性和中心对称性.
2.掌握垂径定理,圆心角、弧、弦之间相等关系定理以及圆周角和圆心角关系定理.
3.进一步认识和理解研究图形性质的各种方法.
教学重点 掌握垂径定理,圆心角、弧、弦之间相等关系定理以及圆周角和圆心角关系定理.
教学难点理解体会研究图形性质的各种方法.
教学媒体学案
教学过程
一:【课前预习】
(一):【知识梳理】
1.圆的有关概念和性质
(1) 圆的有关概念
①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.
②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.
③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.
(2)圆的有关性质
①圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.
②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.
③弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.
④三角形的内心和外心
ⓐ:确定圆的条件:不在同一直线上的三个点确定一个圆.
ⓑ:三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.
ⓒ:三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心
2.与圆有关的角
(1)圆心角:顶点在圆心的角叫圆心角。圆心角的度数等于它所对的弧的度数.
(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。圆周角的度数等于它所对的弧的度数的一半.
(3)圆心角与圆周角的关系:
同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半.
(4)圆内接四边形:顶点都在国上的四边形,叫圆内接四边形.
圆内接四边形对角互补,它的一个外角等于它相邻内角的对角.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源