约1600字。
第十二课时 函数的单调性和奇偶性
【学习导航】
学习要求:
1、熟练掌握函数单调性,并理解复合函数的单调性问题。
2、熟练掌握函数奇偶性及其应用。
3、学会对函数单调性,奇偶性的综合应用。
【精典范例】
一、利用函数单调性求函数最值
例1、已知函数y=f(x)对任意x,y∈R均为f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)= -.
(1)判断并证明f(x)在R上的单调性;
(2)求f(x)在[-3,3]上的最大、小值。
思维分析:抽象函数的性质要紧扣定义,并同时注意特殊值的应用。
解:(1)令x=y=0,f(0)=0,令x=-y可得:
f(-x)= -f(x),在R上任取x1<x2,
则x2-x1>0,
所以f(x2) -f(x1)=f(x2)+f(-x1)=f(x2-x1).
因为x1<x2,所以x2-x1>0。
又因为x>0时f(x)<0,
所以f(x2-x1)<0,即f(x2)<f(x1).
由定义可知f(x)在R上是减函数.
(2)因为f(x)在R上是减函数,
所以f(x)在[-3,3]上也是减函数.
所以f(-3)最大,f(3)最小。
所以f(-3)= -f(3)=2
即f(x)在[-3,3]上最大值为2,最小值为-2。
二、复合函数单调性
例2、求函数y=的单调区间,并对其中一种情况证明。
思维分析:要求出y=的单调区间,首先求出定义域,然后利用复合函数的判定方法判断.
解:设u=x2-2x-3,则y=.
因为u≥0,所以x2-2x-3≥0.所以x≥3或x≤-1.
因为y=在u≥0时是增函数,又当x≥3时,u是增函数,
所以当x≥3时,y是x的增函数。
又当 x≤-1时,u是减函数,
所以当x≤-1时,y是x的减函数。
所以y=的单调递增区间是[3,+ ∞),单调递减区间是(-∞,-1]。
证明略
三、利用奇偶性,讨论方程根情况
例3、已知y=f(x)是偶函数,且图象与x轴四个交点,则方程f(x)=0的所有实根之和是( )
A.4 B.2 C.0
D.不知解析式不能确定
思维分析:因为f(x)是偶函数且图象与x轴有四个交点,这四个交点每两个关于原
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源