约22390字。
《中心对称图形》教案
3.1 图形的旋转
【课标要求】
⒈通过具体的实例认识旋转,探索它的性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质。
⒉能够按要求作出简单平面图形旋转后的图形。
⒊欣赏旋转在现实生活中的应用。
【教学目标】
⒈经历对生活中旋转现象观察、分析过程,引导学生用 数学的眼光看待生活中的有关问题。
⒉通过具体实例认识旋转,知道旋转的性质。
⒊经历对具有旋转特征的图形的观察、操作、画图等过程,掌握作图的技能。
【教学重点】
⒈旋转图形的性质
⒉旋转图形的画法
【教学难点】
旋转图形的画法
【教学思路】
从学生熟悉的生活中的旋转现象入手,帮助学生通过具体的旋转实例认识旋转,理解旋转的基本涵义,再通过观察,从而得出旋转图形的性质,最后通过画旋转图形,让学生掌握作图技能,进一步加深对旋转图形性质的认识。
【教学过程】
一、 创设情境
日常生活中,经常看到以下情境:游乐场里的摩天轮绕着一个固定的点旋转;钟摆绕着一个固定的点摆动。。。。。。(有条件的学校可以用实物投影仪投放生活中的旋转实例)
提出问题:⑴上述情境中的旋转现象有什么共同的特征?
⑵生活还有类似的例子吗?
【设计说明:从学生熟悉的生活中的旋转现象入手,帮助学生通过具体实例认识旋转,理解旋转的基本涵义。同时引导学生用数学的眼光看待生活中的有关问题,发展学生的数学观。】
二、 探索活动一
⒈ 将一块三角尺ABC绕点C按逆时针方向旋转到DCB的位置
问题: 度量∠ACD与∠BCE的度数,线段AC与DC、BC与EC的长度。你发现了什么?
⒉ 将绕点按顺时针方向旋转到的位置。
问题:度量∠AOA`、∠BOB`、∠COC`的度数,线段AO与A`O、BO与B`O、CO与C`O的长度。你发现了什么?
【设计说明:教学中,要引导学生根据课本的要求,实际度量相关角的度数、相关线段的长度。通过对具体实例的观察和实际操作活动,帮助学生认识旋转,理解旋转的涵义,在此基础上,引入旋转的概念。】
三、新课讲授
⒈ 在学生看了与做了的基础上,得出概念。
旋转,旋转中心,旋转角
【注意】 对旋转概念的教学,要帮助学生理解如下两点:
⑴“将一个图形绕着一个定点旋转一定的角度”意味着图形上的每一点同时都按相同
的方式旋转相同的角度;
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源